發布日期:2022-07-19 點擊率:28
光刻技術,顧名思義就是一種用光刻印的技術,它廣泛應用于半導體制造行業以及許多其他納米技術應用中;為適應當今微電子產品日趨微型化的趨勢,相關應用領域越來越需要具備高生產能力的光刻設備。
本文探討了位置反饋技術在現代光刻工藝中的應用,以及最新光柵系統和傳統激光尺系統各自的優勢與潛能,這些特性為機器設計人員提供了極大的靈活性,使其能夠探索如何在不影響性能的前提下最大程度地減少光刻設備的占地面積。
半導體制造
在光刻工藝中,通常首先在硅晶圓上沉積一層光敏性光致抗蝕劑材料(光刻膠)。然后,光束通過光掩模照射到晶圓上,以將掩模圖形呈現在光刻膠上,再使用顯影劑溶解掉經過曝光的光刻膠區域。最后,選擇性地在晶圓表面上的裸露區域內進行蝕刻或填充半導體、導電或絕緣材料。通過這種方式,便可構建出所需的多個微電子特征層(通常要進行大約30次光刻流程)(參見圖1)。
圖1:顯微鏡下的硅晶圓
浸沒式掃描光刻機包含一套透鏡系統,用于使光束穿過光掩模或“中間掩模”聚焦到半導體晶圓上。它還含有一組密封元件,可在物鏡和半導體襯底之間封入一定體積的液體,由于液體的光線折射率高于空氣,因此可以獲得更高的光學分辨率和更小的特征尺寸。
在浸沒掃描中,光束保持固定,而由于透鏡的倒置效應,光掩模和晶圓需沿相反方向運動。這需要將位置精確反饋到光掩模和晶圓運動平臺上的控制致動器,以實現高精度的運動控制。可使光源以一定頻率閃爍,以便每次曝光晶圓上的不同區域。
光掩模與晶圓襯底精確對準,使得每片掩模上的圖案均可精確刻畫到已經存在的蝕刻圖形層上。這一步驟是制造集成電路 (IC) 的關鍵:晶圓和光掩模上的基準點自動對準,誤差范圍小于±20 nm,具體取決于IC的特征尺寸,并修正X、Y和θ(旋轉)方向上的偏置。
每個平臺的長距離增量式測量系統上都需使用直線光柵,以確保位置和速度都達到指定的精度。高精度光柵反饋使中間掩模和晶圓平臺能夠串聯工作,實現以要求的覆蓋精度執行計劃掃描軌跡。激光尺和一些最先進的光柵可以滿足這一半導體制造工藝的苛刻精度要求,例如雷尼紹的最新光柵VIONiC?系列,其電子細分誤差低至 <±15 nm。
平板顯示器制造
平板顯示器 (FPD) 制造中應用的傳統光刻工藝也用于半導體芯片制造。芯片研發的一個主要驅動因素是電子設備尺寸的愈加微型化。另一方面,在FPD行業內,則按照能夠制造出的玻璃基板的最大物理尺寸(單位為平方毫米)對每一代制造技術進行分類。例如,第十代 (G10) FPD是從2880 mm×3080 mm的玻璃基板上切割的。薄膜晶體管 (TFT) 是必不可少的顯示器元件,其臨界尺寸 (CD) 接近3微米,在好幾代制造工藝中都保持穩定。
每一代新產品都可加工出更大的基板,因此必須提高生產率,實現通過單次曝光在基板的更大區域內形成電路圖案。有人提出將多透鏡系統作為問題解決方案,以覆蓋更大區域。
然而,FPD行業的一個重大挑戰是制造和處理越來越大的光掩模,因為光掩模尺寸必須與基板尺寸成正比。無掩模投射系統逐漸流行,成為FPD生產中的替代技術。其中有這樣一種技術,即使用空間光調制器 (SLM) 以類似于數字印刷的方式直接在基板上刻畫圖案。
圖3:帶SLM成像單元的并行光刻系統
圖2:空間光調制器 (SLM) 成像單元
例如,一種并行光刻系統,如圖3所示,包含呈并行陣列排布的一組SLM成像單元,每個單元又包含一個SLM壓模組件、一個球面鏡、多個光源和一套投射透鏡組件,如圖2所示。SLM壓模組件是MEM(微機電系統)器件,具有數千個可控微型鏡組,通過鏡組的傾斜可使入射光在透鏡焦平面中產生高對比度的明暗掩模圖案。需要精確的運動控制來協調成像單元及其下方面積更大的基板運動平臺。在這種情況下,基板沿著X軸移動,SLM單元沿著Y軸移動,如同打印頭一樣。兩個平臺均由空氣軸承支撐,并由直線電機驅動。